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Abstract 

Artificial neural networks are non-linear models used for empirical regression and classification 

problems. The central idea of the technique consists of training the network to learn an existing 

relationship between a set of variables and a target in a given dataset and then use the trained 

network to predict the output of a new data. Their flexibility makes them able to discover more 

complex relationships in data than the traditional statistical models.  A general introduction to the 

basic principle of neural networks methods is presented and application to engineering materials is 

illustrated with the analysis of the tensile properties of mechanically alloyed oxide dispersion 

strengthened steel.
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1.  Introduction 

Neural network modeling provides a powerful and efficient analytical tool with a wide range of 

applications in materials development and processing.  The technique simplifies the processes 

involved in alloys development and materials selection, and reduces the time and costs 

significantly, compared to the traditional methods.  Moreover, neural network as a classification 

model is an efficient process control tool with applications in processes such as welding, heat-

treatment, casting etc.   

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018                                                                   202 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

Materials development and processing is very complex. Although scientific investigations on 

materials have helped greatly in understanding the underlying phenomena, there remain many 

problems where quantitative treatments are lacking. For example, there is little or no progress in 

predicting mechanical properties of materials because of their dependence on large numbers of 

variables. Neural network models are extremely useful in such circumstances, where the complexity 

of the problem is overwhelming from a fundamental perspective and where simplification is 

unacceptable. 

Neural network [1] is a more general method of regression analysis. As in regression analysis, the 

input data xj are multiplied by weights, but the sum of all these products forms the argument of a 

hyperbolic tangent. The output y is therefore a non-linear function of xj, the function usually 

selected being the hyperbolic tangent because of its flexibility. The exact shape of the hyperbolic 

tangent can be varied by altering the weights (Fig. 1a). Further degrees of non-linearity can be 

introduced by combining several of these hyperbolic tangents (Fig. 1b), so that the neural network 

method is able to replicate almost arbitrarily non-linear relationships.  

 

 

 

                                      

 

 

Figure 1: Various shapes and complexity of hyperbolic tangent functions. 

The neural network method has recently been applied to many materials problems, for example: the 

impact toughness of C-Mn steel [2] an analysis of the strength of nickel base superalloys [3] 
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austenite formation in steels;[4] yield and ultimate tensile strength of steel welds [5] fatigue crack 

growth rate in nickel base superalloys [6] mechanical properties in the heat affected zone of power 

plant steels [7] prediction of martensite start temperature [8] prediction of the continuous cooling 

transformation diagram of some selected steels [9] prediction of the measured temperature after the 

last finishing stand in hot rolling [10] and analysis of the tensile properties of mechanically alloyed 

oxide dispersion strengthened iron alloys [11].  

This paper discusses the basic principle of a neural network technique and the application to 

material problems is illustrated with the analysis of the tensile properties of mechanically alloyed 

iron alloys [11].   

2.  Neural Network Structure 

The general structure of a typical neural network is illustrated in Figure 2. Each network consists of 

input nodes (one for each variable x), a number of hidden nodes, and an output node.  

 

 

 

 

 

Figure 2: A typical neural network structure 

Linear functions of the inputs xj are operated on by a hyperbolic tangent transfer function (equation 

1), so that each input contributes to every hidden unit. 

hi = tanh (Σj wij
(1)

  xj + θ j(1) )        (1) 

Hidden Units Inputs Output 
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where θ i and is the bias which is analogous to the constant that appears in linear regression analysis 

and wij is the weight which determines the strength of the transfer in each case. The transfer to the 

output y is linear: 

  y = Σj wij
(2) hi +θ (2)

        (2) 

The specification of the network structure, together with set of weights, is a complete description of 

the formula relating the input to the output. The weights are determined by training the network. 

3.  Training and Optimization of Neural Networks 

A neural network is ‘trained’ using a set of examples of input and output data. The outcome of the 

training is a set of coefficients (weights) and a specification of the functions, which in combination 

with the weight relate the input to the output. The training process involves a search for the 

optimum non-linear relationship between the input and the output data and is accomplished using a 

dataset D = {x(m), t(m)} by adjusting the weights w to minimize an error function, e.g. 

ED (w) = 0.5 Σm Σi [ti
(m) – yi(x(m);w)]2 …     (3) 

This objective function is a sum of terms, one for each input-target pair {x, t}, measuring the degree 

of correlation between the output y{x; w} and the target, t [12]. The parameter m denotes each 

input-output pair. The minimization is based on the repeated evaluation of the gradient of ED using 

‘backpropagation’[1]. The backpropagation algorithm computes for each input-output pair m, the 

gradient of  ½ [y (xm;w) -  tm]2 by following the ‘forward pass’ of equations (1-2) by a ‘backward 

pass’, in which information about the errors [y (xm;w) -  tm] propagates back through the network by 

the chain rule.  

The training for each network is started with a variety of random seeds. The value of a term σv 

gives the framework estimate of the overall noise level of the data. The complexity of the model is 
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controlled by the number of hidden units and the values of the regularization constants, σw, one 

associated with each of the inputs, one for biases, and one for all weights connected to the output.  

The noise level decreases monotonically as the number of hidden units increases. However, the 

complexity of the model also increases with the number of hidden units. A high degree of 

complexity may not be justified if the model attempts to fit the noise in the experimental data. 

Mackay [13,14,15,16] has defined a quantity (the ‘evidence’) which acts as an indicator of the 

probability of model. In circumstances where two models give similar results for the known dataset, 

the more probable model would be predicted to be that which is simpler; this simple model would 

have a higher value of the evidence.  

4.  Validation of Neural Network 

A procedure used to avoid the problem of over-fitting is to divide the training dataset into two equal 

sets, namely, the training and test datasets. The models are developed using training data only. The 

unseen test data are then used to assess how well the model generalizes. This process is called 

validation. A good model would produce similar levels of error in both the test and training data 

(Fig. 3a) whereas an over-fitted model might accurately predict the training data but badly estimate 

the unseen test data (Fig. 3b).   
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Figure 3: Well-fitted Model and Over-fitted Model.  

 

Once the correct complexity of the model has been determined using this procedure, it can be 

retrained using all the data with a small but significant reduction in the error. The test error, Ten, is a 

reflection of the ability of the model to predict the target values in the test data. 

  Ten = 0.5 Σn (yn - tn)2        (4) 

where yn is the set of predictions made by the model, and tn the corresponding target (experimental) 

values previously unseen by the model.  

5.  Committee Model 

It is common practice in the application of neural networks to train many different candidate 

networks from the same data by varying either the number of hidden units or starting value. 

The same data can be modeled in many ways, for example by varying the number of hidden units. 

The variety of models thus produced can be ranked according to the magnitude of the test error and 

the best individual model would then have the minimum test error. However, it is possible in 

principle to improve the performance further by using the average of predictions from a number of 

good models, i.e. a committee of models. The individual models are first ranked by their test errors 

and a committee of N models is then formed by combining the best N models. The mean committee 

prediction is expressed as:    

        ym = (Σi yi) / N                    (5) 

where N is the size of the committee and yi is the estimate of a particular model i.  

6.  Application to Materials Modeling 
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The application of neural network analysis to the modeling of engineering materials is illustrated 

here with the modeling of the mechanical properties of mechanically alloyed oxide dispersion 

strengthened (MA-ODS) metals. Mechanically alloyed metals are produced through the powder 

metallurgy method. The alloys possess many unique properties, particularly for high temperature 

applications; however, a large number of important phenomena are not readily amenable to the 

general theories. Neural network models were developed for the tensile properties of the alloys as a 

function of variables known to be important in influencing mechanical properties [11]. The 

development and application of the model for the ultimate tensile strength are discussed in the 

following paragraphs.  

There were 232 experimental data, 12 input variables, and one output, which is the tensile strength, 

carefully compiled from literature. The 12 input variables consist of the major alloying elements 

and processing variables. Both the input and output variables were normalized within the range + 

0.5 to – 0.5 to facilitate the subsequent comparison of the significance of each of the variables.  

A committee model was used consisting of the top three models whose combination exhibits the 

least test error as shown in Figure 4.  
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Figure 4: Test errors for committees of models. 

 

The significance of each of the input variables perceived by the various model contained in the 

committee is shown by a regularization constant, σw, in Fig. 5. The test temperature is shown to 

have the largest σw for all the models in the committee. This shows that the models have recognized 

a pattern correctly because temperature is more widely varied than any other input in the database. 

Moreover, temperature is known to affect strength very significantly. 
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Figure 5:  Perceived significance of input parameters by the models in the optimum committee 
used. 
 

Figure 6 compares the predicted effect of test temperature on the ultimate tensile strength of the 

recrystallized and unrecrystallized forms of an iron-base MA-ODS alloy. The predicted patterns are 

reasonable and consistent with experiments. The unrecrystallized form is stronger and, in both 

conditions, there is no significant reduction in strength until about 500 oC, when there is a sharp 

decrease in strength. This is peculiar to MA-ODS alloys. 

 

 

 

 

 

 

 

 

 

Figure 6: Predicted ultimate tensile strength of some MA-ODS ferritic steels. 

 

Conclusion 
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A review of the basic concepts of the backpropagation neural network modeling technique has been 

presented and the application to engineering materials was illustrated with the analysis of the tensile 

properties of a mechanically alloyed oxide dispersion strengthened ferritic steel in the recrystallized 

and unrecrystallized conditions. 
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